

Assessing tidal turbine performance and the relationship between the turbine output power and turbulence in a tidal estuary

<u>Alexei Sentchev¹</u>, Maxime Thiébaut¹, François G. Schmitt¹ Le Kien Trung^{1,2}

 (1) Lab. Oceanography & Geosciences, UMR 8187 - LOG Univ. Littoral – Univ. Lille1 – CNRS, FR
(2) Univ. Sci. Technology of Hanoi, VN

Motivation

"Pro-Tide" (*www.pro-tide.eu*) focuses on Developing, Testing and Promoting Tidal Energy in coastal and estuarine zone in the NW Europe

Special focus on innovative systems: small differences in tidal level and/or low flow rate

- **Specific actions:**
- turbine tests and in situ measurements in the Sea Scheldt
- analysis of flow variability and power generated by tidal turbines

Water2Energy (W2E, NL)

Aquascrew (BE)

Blue Energy Canada (BEC)

Experimental site – Sea Scheldt, Temse (BE)

Major characteristics

Tidal estuary with daily flow: 2 x 70 million m³

Width: $\sim 300 \text{ m}$

Mean tidal range: 5 m

ebb/flood flow max speed: 1.0 – 1.8 m/s

Experimental settings

Current profiling, mapping, resource assessment

Space-time variability of the flow

Current ellipses at different depth levels – a small misalignment in the surf layer

Streamwise velocity in Oct 2014 (10 min averaged)

Ebb tide velocities > flood tide velocities

Mean flow properties

Depth averaged (dashed line) and surface layer (1.5 m thick) velocity (grey line). Red/blue lines - EbbFlood flow mid-time

Hist of velocity distribution: ebb/flood flow

Cumulative distribution of V

Ebb flow velocity is 30% higher than flood flow velocity in the surface layer. The choice of tidal period for power production by W2E turbine is not justified

Assessment of the W2E turbine performance

Power: example of the raw data

Power recording unit

P after spike removal (<5%)

Power coefficient

Power curve

Intermittency in a tidal river turbulent flow

We seek to verify the hypothesis of Kolmog-Obukhov's cascade and to estimate some major parameters of the turbulence

Methodology

Obukhov'41 law: Energy in turbulent flow, cascade, dissipation

 $E(k) = C \mathcal{E}^{2/3} k^{-5/3}$

With $k = 2\pi f / U$, C = 1.5, U the mean velocity of the flow, and C_0 derived from the best fit of $E(f)=C_0 f^{5/3}$, the dissipation rate can be estimated:

 $\mathcal{E} = (C_0/C)^{3/2} (2\pi/U)^{5/2}$

Energy containing scale (integral scale) $L = \sigma_u^3 / \mathcal{E}$,

Kolmogorov scale (dissipation scale) $\eta = (\mathcal{V}^3/\mathcal{E})^{1/4}$

Scaling properties and turbulence intensity

Velocity monitoring by ADCP (1Hz) & ADV (16/32 Hz)

Intensity *I*_u

	w/o turbine		with turbine	
Td stage	flood	ebb	flood	ebb
ADV	4.5	5.5	5.0	16.0
ADCP	6.0	7.0	6.5	12.0

- Larger is the sampling interval higher is the intensity (effect of vel evolution)
- •ADCP provides good estimates for low *I*_u
- •ADCP underestimates *I*_u for higher level
- I_u level is very high at 12D !

Scaling properties of the flow

	E (m²s⁻³)	<i>L</i> (m)	η (mm)
w/o turbine	2.10^{-4}	1.7	0.3
with turbine	5.10^{-3}	0.8	0.2

- The working turbine increases dissipation (x 25)
- It breaks turbulent eddies

The turbine considerably affects turbulence in the downstream flow at far ranges (> 12D)

Turbulence and power

Does the ambient (upstream) turbulence affect the turbine?

PSD of output Power

Spectra for current velocity

Conclusion

Field studies are necessary for assessing the flow potential and finding the best location for energy conversion devices

Measurements provided reliable estimates of the mean flow and turbulence properties <u>in real conditions</u> – of primary importance for turbine test.

Turb estimates are sensitive to averaging interval. How to define it?

The W2E tidal turbine performance is evaluated with high degree of confidence (Cp \sim 0.40)

Scaling properties allow to characterize turbulence in a tidal flow. They show a considerable effect of turbine on the background turbulence level

High turbulence intensity (15%) is found at a large distance (12D) downstream the turbine. *How far it remains high*?

In the inertial sub-range, the output power fluctuations are found tightly related with turbulent pulsations of the current velocity. *How to reduce this effect? New design? Concept?*

Acknowledgments:

Reinier Rijke (Water2Energy) Jon Elison (Blue Energy Canada) Roeland Notele (Waterwegen en Zeekanaal)

Thank for your attention

sentchev@univ-littoral.fr