Assessment of Zooplankton Injury and Mortality Resulting from the Deployment of Underwater Turbines for Tidal Energy Production

> David R. Schlezinger¹ Craig D. Taylor² Roland I. Samimy¹ Michael A. Bartlett¹ Brian L. Howes¹

¹ University of Massachusetts, Dartmouth School for Marine Science and Technology Coastal Systems Program

^{2.} Woods Hole Oceanographic Institution Department of Biology

Turbine Effects on Megafauna

Turbine Effects on Zooplankton

similar speeds (e.g. Hoover Dam turbines 90 rpm).

•Very difficult to make quantitative measurements

Traditional Hydroelectric Plants have existed for decades, and turbines rotate at

•Not always possible to separate trauma factors: **Blade strikes** Shear Stress Cavitations **Barotraumas**

•Environmental changes caused by dams alter zooplankton communities both up and down stream of the dam.

Best Hydroelectric Plant data suggests mortality range of 5-15%.

No data exists for Tidal Turbines

Study Area: Muskeget Channel

Cape Cod

Nantucket Sound, Massachusetts

Martha's Vineyard

28

Muskeget Channel

Channel Depth: ~50 m Channel Width: 0.5-2.0 km Max current velocity: 2.5 m/s Nantucket

Commercial Scale Turbine Arrays Require Interception of Significant Volumes of Water

C

ERCULES

Launch of Barge for 2011 Technology Demonstration

Small scale pilot projects often provide the only source for information required to permit commercial projects.

Turbine Operating in Muskeget Channel

Traditional Plankton Collection Methods

Deploy plankton net at turbine hub depth (30 cm diameter, 50µm)

Record current velocities for volume estimates

Perform serial dilutions to ensure proper zooplankton densities

Analyze within 2 hours

Determining Viability of Zooplankton

Developed for USCG to assess ballast water treatment standards
Techniques adapted from NIH protocols including Image J opensource software

2011 Free Flow Demonstration

2012 Flo Design Demonstration

Future Work

- Enhance sample throughput and statistical significance through automation
- Obtain data from other turbine types
 - •Gorlov Turbine
 - Ductless turbine
- •Applications to Traditional Hydroelectric Powerplants
- •Potential impacts on macroscopic zooplankton (Fish larvae, Jelly fish, siphonophores, etc)

Acknowledgments

New England Marine Renewable Energy Center Massachusetts Maritime Academy Town of Edgartown US Department of Energy Massachusetts Clean Energy Center

